Refine Your Search

Topic

Author

Search Results

Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Evaluation of Car-to-Car Frontal Offset Impact Finite Element Models Using Full Scale Crash Data

1995-02-01
950650
This paper describes the results of a study conducted to evaluate the performance and accuracy of a medium size sedan finite element model for off-set car-to-car impacts. This model was originally developed for front impact and does not include side structure compliance. Two tests conducted by the National Highway Traffic Safety Administration are used for evaluation of the simulations. The overall results indicate that the simulations appear to be consistent with the crash test data. Problems associated with the use of node constraints, lack of side structure model fidelity, and the different integration time marching are identified and solutions for the problems are proposed.
Technical Paper

The New Car Assessment Program:Five Star Rating System and Vehicle Safety Performance Characteristics

1995-02-01
950888
In the New Car Assessment Program (NCAP), beginning with the model year 1994 vehicles, the National Highway Traffic Safety Administration (NHTSA) developed and adopted a simplified nonnumeric format for presenting the comparative frontal crashworthiness safety information to consumers. This paper presents the basis for the development of this “star rating” system. The injury probability functions which are used for the star rating system are also applied to the results of the recent NCAP real-world correlation studies and a review of these studies is given. The safety performance for restrained occupants as measured in NCAP is dependent on several parameters which include: the design of the restraint system, the maintenance of the integrity of the occupant space, and the energy management performance of the front structure.
Technical Paper

Hardware Evaluation of Heavy Truck Side and Rear Object Detection Systems

1995-02-01
951010
This paper focuses on two types of electronics-based object detection systems for heavy truck applications: those sensing the presence of objects to the rear of the vehicle, and those sensing the presence of objects on the right side of the vehicle. The rearward sensing systems are intended to aid drivers when backing their vehicles, typically at very low “crawl” speeds. Six rear object detection systems that were commercially available at the time that this study was initiated were evaluated. The right side looking systems are intended primarily as supplements to side view mirror systems and as an aid for detecting the presence of adjacent vehicles when making lane changes or merging maneuvers. Four side systems, two commercially available systems and two prototypes, were evaluated.
Technical Paper

The New Car Assessment Program - Historical Review and Effect

1994-03-01
941052
This report is a condensed version of the December 1993 New Car Assessment Program (NCAP) report to Congress and provides: an historical review and future goals for NCAP. the results of an 18-month study to assess consumer and media needs in understanding and promoting the use of NCAP data. This included consumer focus groups and media studies. These studies indicated that consumers and the media desire comparative safety information on vehicles, a simplified NCAP format to better understand and utilize the crash test results, and would like to see NCAP expanded to include other crash modes. studies of real-world crashes versus NCAP crash tests. These studies conclude that NCAP test conditions approximate real-world crash conditions covering a major segment of the frontal crash safety problem and that there is a significant correlation between NCAP results and real-world fatality risks for restrained drivers.
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

1993-03-01
930482
The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
Technical Paper

A Statistical Analysis of Vehicle Rollover Propensity and Vehicle Stability

1992-02-01
920584
This report documents the accident data collection, processing and analysis methodology used by the National Highway Traffic Safety Administration (NHTSA) in a major agency agency investigation of the rollover propensity of light duty vehicles. Specifically, these efforts were initiated in response to two petitions for rulemaking requesting the development of a standard for rollover stability. Logistic regression models were used to investigate the ability of a number of stability measures to predict vehicle rollover propensity, while accounting for a number of driver and environmental factors. It is not the intent of this paper to document formal agency policy in the area of any possible rulemaking efforts, and as such, references to these activities are not discussed. The reader can obtain information on this activity through normal agency procedures.
Technical Paper

The SISAME Methodology for Extraction of Optimal Lumped Parameter Structural Crash Models

1992-02-01
920358
The SISAME methodology is a system for extracting one-dimensional lumped parameter vehicle crash models from non-oblique crash test data, and for simulation of such models. Model extraction is based on constrained least squares optimization of an overdetermined system of target equations for the model parameters. The SISAME computer program performs extraction and simulation with a number of features that allow user control of the computations and outputs. Additional computer programs perform data assessment/correction and filtering. Experience has shown that the SISAME methodology can efficiently produce predictively useful models that accurately capture the motions of the actual crash event. The essential formulation of SISAME and some sample applications are presented in this paper.
Technical Paper

Evaluation of Child Safety Seats Based on Sled Tests

1987-11-01
872210
The injury reducing effectiveness of child safety seats in frontal crashes was evaluated, based on 36 frontal or oblique sled tests run with two or more GM three-year-old dummies in the simulated passenger compartment of a car. Unrestrained, correctly restrained and incorrectly restrained dummies were tested at the range of speeds where most nonminor injuries occur (15-35 mph). Accident data from NHTSA files were used to calibrate a relationship between the front-seat unrestrained dummies' HIC and unrestrained children's risk of serious head injuries; also between torso g's and the risk of serious torso injuries. These relationships were used to predict injury risk for the restrained children as a function of crash speed and to compare it to the risk for unrestrained children. The sled test analysis predicted that the 1984 mix of correctly and incorrectly used safety seats reduced serious injury risk by 40 percent relative to the unrestrained child, in frontal crashes.
Technical Paper

CRASH 3: Current Status

1987-04-01
870040
The computer program, CRASH 3, uses the equations of motion to estimate the changes in velocity of motor vehicles in crashes and their trajectories following a collision. It was developed in the mid-1970's by McHenry at Caispan for use in accident research. There are important limitations on where and how it should be used. CRASH 3 requires a skilled reconstruction of a crash and an interactive execution of the program to provide reasonably accurate results. The paper also discusses the sensitivity of CRASH 3 to various parameters and the potential for improving it. This paper presents the views of its author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

A Simple, Practical Method of Assessing Foam Padding Materials for Head Impact Protection

1986-02-24
860199
Since 1960 head impact responses under the action of various forces have been studied analytically. However, the effects of force distribution upon head injury mechanisms have not been studied because measurements of force distribution during head impacts have not been experimentally available. In the past, several methods were tested in order to measure head contact pressure, but the results were not very useful. Since the skull is a composite shell structure, the thin shell theory may be valid for stress analysis. According to the theory, the influence of an external load on a shell element damps out rapidly as the distance between the load and the element increases. Stress concentrations occur in the shell elements directly under the center core area of a localized external load. Therefore, the force on the center core, not the entire force distribution, is critical for the assessment of skull responses.
Technical Paper

Evaluation of the Effectiveness of Child Safety Seats in Actual Use

1983-10-17
831656
A comprehensive review of casualty-reducing effectiveness estimates of child safety seats in actual use, obtained by statistical analyses of highway accident data. Recent analyses of large samples of New York and Maryland accidents show statistically significant injury reductions for child safety seats; so does a new analysis of the National Highway Traffic Safety Administration's accident files. Results from Washington State, Tennessee, New Jersey, and Idaho are also reviewed, as are Nationwide restraint usage and fatality trends. The findings are critically examined for possible data biases. It is concluded that child safety seats definitely reduce deaths and injuries in highway crashes, but that their effectiveness cannot be accurately estimated at this time because of inconsistencies and possible biases in the various studies.
Technical Paper

Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations

1983-02-01
830186
The paper presents a comparison of kinematic responses between the MVMA-2D and the MAC-DAN pedestrian models and pedestrian cadaver kinematics observed in staged car/pedestrian impact tests. The paper also discusses the injuries experienced in the cadaver tests. Seven cadaver specimens in the standing posture were impacted at 25 mph by two different cars: one having a steel bumper and the other having a plastic bumper. The MVMA-2D and MAC-DAN mathematical pedestrian models were employed to simulate pedestrian impacts at 25 mph by a vehicle with a stylized geometry that is similar to the vehicles used in cadaver tests. Comparison of the simulations and the cadaver tests show that both models require further refinement to be able to more accurately simulate the kinematics of the lower legs during impacts with the vehicle bumper.
Technical Paper

A Search for Priorities in Crash Protection

1982-02-01
820242
This paper presents the methodology and results of an analysis of the available information on motor vehicle safety which could be used to provide a basis for establishing priorities for future Government and private sector efforts directed at enhanced crash protection. The work was stimulated by several factors: (1) 5 years have elapsed since the National Highway Traffic Safety Administration (NHTSA) published a plan for motor vehicle safety research and development, (2) motor vehicles have changed substantially over the past several years, (3) the quantity and quality of accident data and vehicle crash performance information have increased dramatically over the past 5 years, and (4) Government policies and the amount of Government and private sector resources available for future efforts are changing.
Technical Paper

Improving Safety Belt Acceptability to the Consumer

1979-02-01
790681
Currently, consumers must contend with many comfort and convenience problems whenever they use a manually operated (“active”) safety belt. Such problems are prevalent not only in older models but in new cars as well. Beginning with 1982 models, most auto manufacturers plan to install automatic safety belts to meet new Federal requirements for passive occupant protection. To reduce the likelihood of consumer rejection and non-use of automatic as well as manual belt systems, research has been conducted to develop performance specifications for improved comfort and convenience. This paper discusses specifications and criteria to improve the safety belts by reducing comfort and convenience variables for both manual and automatic systems.
Technical Paper

Automotive Recorder Research - A Summary of Accident Data and Test Results

1974-02-01
740566
The NHTSA has developed automotive recorders which can measure crash triaxial acceleration/time histories during vehicle collisions. From these acceleration histories (recorded on a magnetic disc), velocity/time histories and velocity change during impact are derived to provide measures of vehicle crash severity. The purpose of developing these recorders is to provide accurate and quantitative relationships of vehicle crash severity with occupant fatalities and serious injuries from real-world accidents. To date, a total of 1200 disc recorders has been produced, approximately 1050 recorders have been installed in fleet vehicles, and 23 accident records have been analyzed. This paper has been prepared to present the progress made in the Disc Recorder Pilot Project as of March 31, 1974. Recorder data from accidents involving vehicles equipped with disc recorders will be discussed and compared with associated reports by accident investigators.
X